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Abstract

We explore how imperfect regulation enforcement a�ects the design of optimal macroprudential
policy. We study an open economy workhorse model of macroprudential regulation motivated by
pecuniary externalities. Our analytical characterization shows that imperfect enforcement gen-
erates two opposing e�ects. While tighter regulation leads to higher borrowing by unregulated
agents, a “leakage e�ect”, mitigating the increase in fragility calls for “squeezing” regulated agents
further. �antitative simulations show that, overall, a macroprudential policy that accounts for
the leakages remains successful at mitigating the vulnerability to �nancial crises.
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1 Introduction

Macroprudential regulation has emerged as a central element of the post-�nancial crisis dominant
policy paradigm, in which the management of credit cycles has been elevated to the rank of �rst-
order policy concerns. Central to this view is the notion that curbing credit booms reduces �nancial
sector vulnerabilities to future reversals in �nancial conditions. �e e�ectiveness of macroprudential
regulation, however, is not being taken for granted and has been the subject of a growing empirical
literature (see, e.g., Ceru�i, Claessens and Laeven, 2017). Indeed, a common policy concern is that
such new regulation could be bypassed and have unintended consequences.1

How is the optimal design of macroprudential regulation altered by the presence of leakages?
Is the scope for macroprudential policy signi�cantly altered by the possibility of leakages? Does
macroprudential policy remain desirable in the presence of leakages? �e theoretical literature on
macroprudential policy has so far abstracted from the imperfect regulation enforcement, and thus a
proper framework to address these questions is lacking. Our goal in this paper is to �ll this gap by
providing a theoretical model suited to tackle these issues.

In line with the emerging policy paradigm and the theoretical literature, we adopt a framework
in which ine�cient private borrowing decisions generate excessive �nancial fragility (e.g., Lorenzoni
2008; Bianchi 2011). In our theory, a pecuniary externality resulting from frictions in �nancial mar-
kets makes macroprudential policy desirable, yet the introduction of such policy endogenously leads
to increased risk taking by a shadow sector endowed with the ability to bypass regulation. �ese
unintended spillover e�ects in turn feed into the economy’s exposure to �nancial crises, limiting the
e�ectiveness of macroprudential policy and altering its optimal design.

We start our analysis with a tractable three-period model. In the model, agents initially make a
borrowing decision and are then subject to income shocks in the intermediate period while facing a
collateral constraint that limits their ability to smooth consumption. �e presence of a market price in
the collateral constraint implies that the higher the aggregate leverage chosen in the initial period, the
larger the contraction in the borrowing capacity in the intermediate period for all households. �is
pecuniary externality and the associated �nancial ampli�cation e�ects are not internalized by private
households, providing a rationale for a macroprudential policy aimed at limiting private leverage.

Di�erent from existing studies, macroprudential regulation is subject to imperfect enforcement.
In particular, the macroprudential authority is able to curb risk taking within a narrow (regulated)
sector, while internalizing the endogenous response of the shadow (unregulated) sector. A stricter
macroprudential policy seeking to make regulated agents internalize the pecuniary externality cre-
ates a safer environment but has the unintended consequence of encouraging higher borrowing by
unregulated agents. �ese spillovers undermine the e�ectiveness of macroprudential policy and in-

1 Empirical studies analyzing such leakages in macroprudential policies include Magud et al. (2011), Aiyar, Calomiris
and Wieladek (2014), Klein (2012), Jiménez, Ongena, Peydró and Saurina (2012), Forbes, Fratzscher and Straub (2015),
Dassa�i and Peydró (2013), and Ahnert, Forbes and Reinhardt (2018).
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crease the economy’s exposure to �nancial crises.
We show that despite destabilizing spillover e�ects on the unregulated sphere, a small macropru-

dential tax on regulated agents is always strictly welfare improving for all agents. Going beyond a
perturbation argument, we derive an explicit formula for the optimal macroprudential tax. Relative to
the standard Pigouvian tax expression familiar from the literature, accounting for leakages yields two
new elements. One re�ects the weaker in�uence of the �nancial regulator onto the price of collateral
due to the unregulated sector partially o�se�ing the regulated sector’s response to the regulation. �e
second one re�ects the regulator’s higher valuation of relaxing future collateral constraints resulting
from the unregulated sector’s higher exposure to �nancial crises. Taken together, these two e�ects
imply an ambiguous e�ect of leakages on the size of optimal macroprudential taxes.

We then turn to an in�nite horizon model to pursue a quantitative analysis. In the in�nite horizon
context, leakages further give rise to a time inconsistency problem. To see why, suppose agents expect
loose regulation in the future. �is expectation generates a perception of a riskier environment, which
induces unregulated agents to take less risk today, narrowing the gap between the borrowing choices
of regulated and unregulated agents. Interestingly, this channel works despite unregulated agents
not being directly subject to regulation. Given our goal of evaluating the extent to which leakages
undermine the e�ectiveness of regulation, we �nd it useful to focus on a discretionary regime in
which a regulator has limited ability to exploit the disciplining e�ect just described. We thus consider
a government that sets optimal regulation sequentially and without commitment, and we focus on
Markov-perfect equilibria. We then calibrate our in�nite horizon model to match the features of
emerging market crises and experiment with degrees of leakages ranging from 0 to 50% of agents
making up the unregulated sphere of the economy.

�e main take away from our quantitative analysis is that even subject to signi�cant leakages,
macroprudential policy remains highly e�ective and desirable. To o�set the increase in borrowing
by the unregulated sector, the planner induces even tighter regulation on the regulated sector, and
this results in aggregate levels of borrowing that are comparable to the constrained-e�cient alloca-
tion. Average welfare gains are also surprisingly stable with respect to leakages. Nonetheless, the
welfare gains are spread unevenly in the economy, with the lion’s share going to unregulated agents.
Intuitively, while the �nancial stability bene�ts of macroprudential policy are partially o�set by the
burden of regulation for regulated agents, they are not for unregulated agents, who free-ride on oth-
ers’ precautionary behavior.

Related Literature. �is paper belongs to a growing literature providing foundations for macro-
prudential policies. A �rst strand of this literature, most closely related to our paper, examines pecu-
niary externalities and incomplete markets when �nancial constraints depend on market prices (Ca-
ballero and Krishnamurthy, 2001, Lorenzoni, 2008, Bianchi, 2011, Jeanne and Korinek, 2012, Bianchi
and Mendoza, 2018, Korinek, 2018). Abstracting from imperfect regulation enforcement, this literature
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has tackled several issues, including the interactions between macroprudential and stabilization poli-
cies (Benigno et al., 2013), monetary policy (Fornaro, 2015, O�onello, 2015, Sergeyev, 2016, Coulibaly,
2018, Devereux, Young and Yu, 2018), foreign reserves (Arce, Bengui and Bianchi, 2019; Davis et al.,
2020), international coordination (Bengui, 2013), policy cyclicality (Schmi�-Grohé and Uribe, 2017),
multiple equilibria (Schmi�-Grohé and Uribe, 2016), learning (Bianchi, Boz and Mendoza, 2012), news
and regime switching shocks (Bianchi, Liu and Mendoza, 2016), uncertainty shocks (Reyes-Heroles
and Tenorio, 2018), trend shocks and the implications for the cyclicality of capital controls (Flem-
ming, L’Huillier and Piguillem, 2019, Seoane and Yurdagul, 2017). A second strand of the literature on
macroprudential policy examines aggregate demand externalities in the presence of nominal rigidities
(Schmi�-Grohé and Uribe, 2013, Farhi and Werning, 2016). Recent research in this area has studied
Mundell’s Trilemma (Farhi and Werning, 2012), liquidity traps (Korinek and Simsek, 2016, Acharya
and Bengui, 2018, Fornaro and Romei, 2018, Bianchi and Coulibaly, 2021), and �scal unions (Farhi and
Werning, 2017). See Bianchi and Lorenzoni (2021) and Bianchi and Mendoza (2020) for reviews of the
literature.

A common theme in this literature is the presence of a wedge between the private and social cost
of borrowing, which generates scope for Pigouvian taxes. Our contribution is to explicitly model the
imperfect enforcement of macroprudential regulation, pursuing both a qualitative and quantitative
analysis of optimal policy. �e paper also speaks to an empirical literature that examines the ef-
fectiveness of macroprudential regulation.2 In particular, our quantitative predictions are consistent
with the �ndings that tighter regulation leads to opposite risk-taking responses by di�erent agents,
although tighter regulation leads to an overall reduction in risk taking (Dassa�i and Peydró, 2013,
Aiyar, Calomiris and Wieladek, 2014).

Finally, our paper relates to a literature in �nancial intermediation studying the interaction be-
tween regulation and shadow banking activity. Examples include Huang (2014), Plantin (2015), Grochul-
ski and Zhang (2015), Farhi and Tirole (2017), Ordonez (2018), Ordonez and Piguillem (2018), Begenau
and Landvoigt (2018) and Bengui, Bianchi and Coulibaly (2019). Begenau and Landvoigt, for example,
study a model in which traditional banks are covered by deposit insurance but shadow banks are not,
and �nd that a tightening of capital requirements for traditional banks causes shadow banks to take
over a larger fraction of the credit market. We do not model banks explicitly but instead consider
a generic se�ing with regulated and unregulated agents, and point to a distinct channel involving
leverage responses to endogenous changes in systemic risk generated by regulation. From a nor-
mative standpoint, the above mentioned literature adopts a primarily microprudential approach to
�nancial regulation. Overall, our paper provides the �rst analysis of macroprudential regulation in
an economy with an unregulated sector.

�e paper is organized as follows. Section 2 presents a three-period model that shows analytical
results for the main mechanisms in the paper. Section 3 presents the results from the in�nite horizon

2See footnote 1 for a list of papers.
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quantitative model. Section 4 concludes. Proofs are collected in the appendix.

2 A �ree-Period Model

In this section, we present an analytically tractable three-period model of �nancial crises in which
macroprudential policy cannot be enforced on a subset of agents that are outside the regulated sector.
We adopt speci�c assumptions on preferences that deliver closed-form solutions for continuation
equilibria and help us obtain an analytical characterization of the optimal macroprudential policy
problem in the presence of leakages. Later, in Section 3, we study the same mechanisms we outline
in this simple model in the context of a more general quantitative in�nite horizon model.

2.1 Environment

We consider a small open economy that lasts for three periods C = 0� 1� 2. �ere are two types of goods,
tradables and nontradables, and no production. �e only source of uncertainty is over the endowment
of tradable goods in period C = 1.

�e economy is populated by a continuum of agents of one of two types 8 = * � ’ that di�er in
their ability to bypass regulation: a fraction W is unregulated (* ) and the remaining 1 �W is regulated
(’). �e distinction between unregulated and regulated agents is intended to capture in a broad sense
the existence of a shadow banking sector, di�erences in access to sources of funding, or di�erences
in the ability to circumvent regulation by di�erent agents. Our focus will be on how these di�erent
types of agents respond di�erently to policy and its implications for optimal regulation. For the most
part, we consider an environment where the size of the unregulated sector W is exogenous, but will
also provide a simple way to endogenize W based on an idiosyncratic cost of bypassing regulation.

Both types of agents have identical preferences and endowments. Preferences are given by

,8 = 2)80 ‚ E0
�
V ln „281” ‚ V2 ln „282”

�
(1)

with
28C =

�
2)8C

�l �
2#8C

�1�l
�

where E is the expectation operator and V � 1 is a discount factor. Date 0 utility is linear in tradable
consumption 2) , while date 1 and date 2 utility is logarithmic in a consumption basket 2 , which is a
Cobb-Douglas aggregator of tradable goods consumption 2) and nontradable goods consumption 2# .
�e parameter l is the share of tradables in total consumption.

Agents receive endowments of tradable goods and nontradable goods of
��
~)C „B”

	
� ~#C

�
at date 1

and date 2, but do not receive any endowment at date 0. �e date 1 endowment of tradables ~)1 „B”
is a random variable depending on the event B 2 ( , which can be interpreted as the aggregate state
of the economy. For simplicity, we assume that ~)2 is deterministic and that the nontradable goods
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endowment is constant, ~#1 = ~#2 = ~# .
Agents have access to a single, one-period, non-state-contingent bond denominated in units of

tradable goods that pays a �xed interest rate A , determined exogenously in the world market. Denoting
the relative price of nontradables by ?# , the agents’ budget constraints in all three periods are given
by

2)80 ‚ „1 ‚ g8”�1181 = )8 (2)

2)81„B” ‚ ?#1 „B”2#81 „B” ‚ 182„B” = „1 ‚ A ”181 ‚ ~)1 „B” ‚ ?#1 „B”~# 8B (3)

2)82„B” ‚ ?#2 „B”2#82 „B” = „1 ‚ A ”182„B” ‚ ~) ‚ ?#2 „B”~# 8B� (4)

where 1C‚1 denotes the bond holdings an agent chooses at the beginning of period C , g8 denotes the
tax rate on date 0 borrowing, and )8 is a lump-sum transfer. Crucially, we impose g* = 0, that is,
unregulated agents face no tax on borrowing.3 To abstract from the distributional side e�ects of
macroprudential policy, we assume that the planner rebates the tax proceeds to the agents who pay
the tax.

At date 1, agents are subject to a credit constraint preventing them from borrowing more than a
fraction ^ of their current income:

182„B” � �^
�
?#1 „B”~# ‚ ~)1 „B”

�
8B � (5)

�is credit constraint captures in a parsimonious way the empirical fact that income is critical in
determining credit market access. �e form of this constraint follows Mendoza (2002) and is common
in the literature on �nancial crises and macroprudential policy (e.g., Bianchi, 2011 and Korinek, 2018).4

Agents choose consumption and savings to maximize their utility (1) subject to budget constraints
(2), (3), (4), and the credit constraint (5), taking ?#1 „B” and ?#2 „B” as given. Necessary and su�cient

3We assume that unregulated agents are prevented from arbitraging via borrowing abroad and lending domestically
to the regulated sphere (e.g., because of technological reasons). Equivalently, we could assume that the tax on borrowing
on the regulated sphere applies to both domestic and foreign forms of borrowing.

4�is collateral constraint can be derived endogenously from limited enforcement assuming that: (i) households can
default at the end of the period (before observing next period income realization), (ii) upon default, foreign creditors can
seize a fraction ^ of the current income and households regain access immediately to credit markets. Non-tradable goods
enter the collateral constraint because while foreign creditors do not value non-tradable goods, they can sell it in exchange
for tradable goods a�er seizing these goods a�er default. �e current and not the future price appears in the constraint
because the opportunity to default is at the end of the current period, before the realization of future shocks (see Bianchi
and Mendoza, 2018).
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conditions for optimality are given by

?#C „B” =
1 � l
l

2)8C „B”
2#
8C
„B”
� (6)

1 = V „1 ‚ A ” „1 ‚ g8”E0

"
l

2)
81„B”

#
� (7)

l

2)
81„B”

� V „1 ‚ A ” l

2)
82„B”

with equality if 182„B” ¡ �^ „?#1 „B”~# ‚ ~)1 „B”) (8)

for all B . Condition (6) is a static optimality condition equating the marginal rate of substitution be-
tween tradable and nontradable goods to their relative price. Conditions (7) and (8) are the Euler
equations for bonds at date 0 and date 1. �e la�er holds with strict inequality if the credit con-
straint binds, in which case current marginal utility exceeds the expected marginal utility costs from
borrowing one unit and repaying next period.

Finally, the government budget constraint says that taxes on borrowing are rebated back to regu-
lated agents:

)’ = � g’

1 ‚ g’
1’1 and )* = 0� (9)

De�nition of competitive equilibrium. Given a tax policy g’�)’ , a competitive regulated equi-
librium of the model is a set of date 0 choices f2)80� 181g82f* �’g, date 1 choices f2)81„B”� 2)82„B”�
2#81 „B”� 2#82 „B”� 182„B”g82f* �’g�B2( , and prices f?#1 „B”� ?#2 „B”gB2( such that (1) given prices and taxes, agents’
decisions are optimal, (2) the market for the nontradable good clears at all dates, and (3) the govern-
ment budget constraint holds.

In what follows, we proceed by backward induction. We �rst analyze the date 1 continuation
equilibrium for given date 0 bond choices and then turn to the determination of date 0 borrowing
decisions.

2.2 Date 1 continuation equilibrium

To simplify the analysis, we make the following parametric assumptions.

Assumption 1. �e domestic agents’ discount factor and the international interest rate satisfy V „1‚A ” =

1.

�is assumption, common in small open economy models, implies that domestic agents are as
patient as international investors. A result of this assumption is that there is no intrinsic motivation
for consumption tilting in the domestic economy between date 1 and date 2, which simpli�es the
households’ optimization problem.

Assumption 2. �e consumption shares and collateralizable fraction of income are such that 0 � ^ �

l�„1 � l”.
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�is assumption simpli�es the analysis by guaranteeing that there is a unique (continuation) equi-
librium. As will become clear below, when Assumption 2 holds, an increase in aggregate consumption
by one unit does not relax agents’ credit constraint by more than one unit in equilibrium.

For given date 0 savings choices, the agent’s date 1 problem conveniently admits a closed-form
solution. If an agent 8 is unconstrained at date 1, his consumption plan for all B is given by

2)81„B” = 2)82„B” =
l

1 ‚ VF481„B”� and 2#8C „B” =
1 � l
1 ‚ V

F481„B”
?#C „B”

� for C = 1� 2� (10)

whereF481„B” is the agent’s date 1 lifetime wealth:

F481„B” � „1 ‚ A ”181 ‚ ~)1 „B” ‚ ?#1 „B”~# ‚
~)2 ‚ ?#2 „B”~#

1 ‚ A �

To �nance this consumption plan, the agent borrows the shortfall between his expendituresF481„B”�„1‚
V” and cash on hand „1 ‚ A ”181 ‚ ~)1 „B” ‚ ?#1 „B”~# at date 1:

182„B” = 1D=282 „B” �
V

1 ‚ V

"
„1 ‚ A ”181 ‚ ~)1 „B” ‚ ?#1 „B”~# �

~)2 ‚ ?#2 „B”~#

1 ‚ A

#
� (11)

�e agent is constrained at date 1 if the bond position in (11) violates the credit constraint (5). In
this case, he borrows the maximum amount:

182„B” = 12>=82 „B” � �^
�
~)1 „B” ‚ ?#1 „B”~#

�
(12)

and chooses a consumption plan given by

2)81„B” = lF̃481„B”

2#81 „B” = „1 � l” F̃481 „B”
?#1 „B”

2)82„B” = l „1 ‚ A ” »F481„B” � F̃481„B”…

2#82 „B” = „1 � l” „1 ‚ A ”F481 „B”�F̃481 „B”
?#2 „B”

�
(13)

where F̃481„B” is the agent’s date 1 constrained wealth

F̃481„B” � „1 ‚ A ”181 ‚ „1 ‚ ^”
�
~)1 „B” ‚ ?#1 „B”~#

�
�

which corresponds to the sum of actual date 1 wealth and the maximum amount that can be borrowed.
�e nontradable goods market clearing condition is

W�#*C „B” ‚ „1 � W”�
#
’C „B” = ~# � for C = 1� 2� (14)

where uppercase le�ers with* or ’ subscripts denote aggregates over an agent’s type.
�e aggregation of the two sets of agents’ intertemporal budget constraints yields the economy’s
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intertemporal resource constraint:

�)1 „B” ‚
�)2 „B”
1 ‚ A = „1 ‚ A ” »W�* 1 ‚ „1 � W”�’1… ‚ ~)1 „B” ‚

~)2
1 ‚ A � (15)

where �)C „B” � W�)*C „B” ‚ „1 � W”�
)
’C
„B” is aggregate tradable consumption.

Combining the nontradable market clearing condition (14) with the agents’ static optimality con-
dition (6) indicates that the equilibrium price of nontradables is proportional to the economy’s ab-
sorption of tradables:

?#C „B” =
1 � l
l

�)C „B”
~#

� (16)

�is condition establishes a positive equilibrium relationship between the price of nontradables and
aggregate tradable consumption for a given level of nontradable output. Intuitively, when tradable
consumption is high relative to nontradables consumption, the relative price of nontradables has to be
high. Given homothetic preferences, a negative shock to the tradable goods endowment ~) generates
a decline in the demand for both consumption goods. For a given level of nontradable output - and, by
market clearing, nontradable consumption - the equilibrium relative price of nontradables ?# must
fall to induce agents to substitute tradable with nontradable consumption. Crucial for our analysis is
that a higher aggregate level of debt accumulated at date 0 will similarly imply a lower level of tradable
consumption and thus a lower price of nontradables for any income shock at date 1. �rough the credit
constraint (5), this implies a lower borrowing capacity and a tighter borrowing constraint when this
constraint is binding.5 Individual agents do not internalize these e�ects, which generates a scope
for welfare-improving macroprudential regulation at date 0, as in Bianchi (2011) and others. In this
context, the novelty of our analysis regards the planner’s inability to tax or regulate the borrowing
decision of a subset of agents.

At date 1, the economy’s aggregate state variables are given by the tradable goods endowment
~)1 „B” and by the respective aggregate bond positions of unregulated and regulated agents, �* 1 and
�’1. We denote the functions mapping these state variables into date C aggregate tradable con-
sumption, unregulated agents’ tradable consumption, and regulated agents’ tradable consumption by
�)C „~)1 „B”� �* 1� �’1”, �)*C „~

)
1 „B”� �* 1� �’1”, and �)

’C
„~)1 „B”� �* 1� �’1”, respectively. Similarly, we respec-

tively denote the functions mapping the state variables into date C aggregate nontradable consump-
tion, unregulated agents’ nontradable consumption, and regulated agents’ nontradable consumption
by �#C „~)1 „B”� �* 1� �’1”, �#*C „~

)
1 „B”� �* 1� �’1”, and �#

’C
„~)1 „B”� �* 1� �’1”. Finally, we denote the pricing

function by ?#C „~)1 „B”� �* 1� �’1”. Depending on which set(s) of agents is (are) credit constrained, the
economy can be in four regions at date 1: 22 where both types of agents are constrained, 2D where*
agents are constrained and ’ agents are unconstrained, D2 where * agents are unconstrained and ’
agents are constrained, andDD where both types of agents are unconstrained. In each of these regions,

5From equation (16), an increase in aggregate consumption raises the price of nontradables by l
„1�l”~# and hence

raises overall borrowing capacity by ^ l
1�l , which by Assumption 2 is strictly lower than one.
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tradable consumption is linear in all three state variables. In particular, date 1 aggregate tradable con-
sumption is increasing in~)1 „B”, �* 1, and �’1. As a result, the date 1 price of nontradables is increasing
in ~)1 „B”, �* 1, and �’1. In addition, these two date 1 variables are more sensitive to tradable income
when credit constraints are binding. Similarly, �)1 and ?#1 are more sensitive to �* 1 and �’1 in the
regions where the credit constraints are binding. Appendix A formally establishes these results and
related ones.

Figure 1 illustrates the sensitivity of the price of nontradables ?#1 with respect to the wealth posi-
tions �’1 and �* 1 in the four regions, for a given realization of date 1 tradable income. �e downward-
sloping light lines represent iso-price curves. Lines farther to the northeast represent higher levels
of ?#1 . Naturally, agents are constrained at lower wealth levels. �e smaller distance between the
iso-price curves in the constrained regions re�ects a higher sensitivity of ?#1 in these regions. �e
intuition is as follows. When the credit constraint does not bind, consumption is increasing in wealth
because of a standard permanent income e�ect. When it does bind, however, the sensitivity is higher
because of an additional �nancial ampli�cation e�ect working through the price of nontradables. �e
larger the mass of constrained agents, the stronger this �nancial ampli�cation e�ect and thus the
stronger the sensitivity of ?#1 to debt.

Figure 1: Date 1 price of nontradable good as a function of savings positions �’1 and �* 1 for a given
tradable endowment ~)1 .

�e properties of the equilibrium nontradable price function discussed above have key implica-
tions for the spillover e�ects of macroprudential policy onto the unregulated sphere of the economy.
In particular, the increasingness of ?#1 in �’1 means that the date 1 total income at market prices
and the date 1 borrowing capacity of unregulated agents are both increasing in the date 0 savings
of the regulated agents. �is in turn implies that for a given level of debt of unregulated agents, the
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consumption of these agents is higher the lower the debt of regulated agents. �is is illustrated in
Figure 2, which represents unregulated agents’ date 1 tradable consumption �)

* 1 as a function of the
realization of tradable income ~)1 , for two di�erent regulated savings levels �̄’1 � �̃’1 and a given
unregulated savings level �̄* 1 = �̄’1. �e light curve represents the consumption function for a high
level of regulated agents’ debt (i.e., high �’1), while the dark curve represents the function for a lower
level of regulated agents’ debt (i.e., a lower �’1). �e �gure shows that a lower level of regulated
agents’ debt has several general equilibrium e�ects on unregulated agents’ consumption. First, by
increasing total income evaluated at market prices, it shi�s consumption up when all agents are un-
constrained. Second, by propping up collateral value, it shi�s the region where unregulated agents
become constrained to the le�. �ird, and maybe more subtly, it reduces the sensitivity of (unregu-
lated agents’) consumption to income for intermediate levels of income at which unregulated agents
are constrained but regulated agents are not.

Figure 2: Unregulated agents’ date 1 consumption as function of the tradable endowment~)1 , for given
savings pairs „�̄* 1� �̄’1” and „�̄* 1� �̃’1”, with �̄* 1 = �̄’1 � �̃’1.

�e general equilibrium e�ects just described of regulated agents’ borrowing on unregulated
agents’ date 1 consumption pro�le naturally translate into spillovers from regulated agents’ borrow-
ing into unregulated agents’ borrowing at date 0. We elaborate on these in Section 2.4.

At this stage, we can de�ne the date 1 value in equilibrium of an agent of type 8 as a function of
the aggregate state variables of the economy as

+81„~)1 „B”� �* 1� �’1” =
Õ
C=1�2

VC�1
�
ln

�
�)8C „~)1 „B”� �* 1� �’1”

�l
‚ ln

�
�#8C „~)1 „B”� �* 1� �’1

�1�l
�
� (17)

�is value function will be useful for the normative analysis coming up in Section 2.5.
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2.3 Date 0 unregulated equilibrium

We refer to the competitive equilibrium that prevails when the tax g’ is set to zero as the unregulated
equilibrium. �e unregulated equilibrium naturally displays symmetric borrowing choices (�* 1 =

�’1 � �D41 ) and is characterized by the following Euler equation:

1 = E0

"
l

�)1 „~)1 „B”� �D41 � �
D4
1 ”

#
� (18)

Lemma 1. �e date 0 competitive equilibrium exists and is unique.

2.4 Equilibrium with exogenous tax

To lay the groundwork for our analysis of optimal macroprudential policy in the presence of leakages,
we start by characterizing the private sector’s response to an exogenous tax on borrowing. In a second
step, we will then solve for the optimal tax chosen by a benevolent government.

A competitive regulated equilibrium can be conveniently characterized by a sole pair of Euler
equations,

1 = E0

"
l

�)
* 1„~

)
1 „B”� �* 1� �’1”

#
� (19)

1
1 ‚ g’

= E0

"
l

�)
’1„~

)
1 „B”� �* 1� �’1”

#
� (20)

where (19) and (20) are the respective Euler equations for date 0 borrowing of unregulated and regu-
lated agents.

Given a value for �’1, (19) implicitly de�nes the equilibrium borrowing choice of unregulated
agents. Likewise, for a given value of �* 1 and a given tax g’ , (20) implicitly de�nes the equilib-
rium borrowing choice of regulated agents. We can thus formally de�ne the following equilibrium
responses of the two sectors.

De�nition 1 (Equilibrium borrowing responses). �* 1 = q* „�’1” denotes the equilibrium borrowing
responses of * agents to the borrowing of ’ agents, as implicitly de�ned by (19). Similarly, �’1 =

q* „�* 1� g’” denotes the equilibrium borrowing responses of ’ agents to the borrowing of * agents
and a tax rate, as implicitly de�ned by (20).

To understand the e�ect of macroprudential policy with leakages, a key issue is the impact of a
change in borrowing by one type of agent on the other agents’ borrowing choice. Our next result
characterizes such responses.

Proposition 1 (Substitutability in borrowing decisions). For a given tax rate, the equilibrium borrow-
ing of unregulated agents is decreasing in the amount of borrowing of ’ agents and vice versa; that is,
q0
*
„�’1” � 0 and mq’ „�* 1� g’”�m�* 1 � 0.
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Proposition 1 establishes that borrowing decisions by the two sets of agents are akin to strategic
substitutes. �e less regulated agents borrow, the more unregulated agents �nd it optimal to borrow
(and vice versa). �is result follows naturally from our discussion of how unregulated agents’ date 1
consumption depended on regulated agents’ borrowing in the context of Figure 2.6 Lower borrowing
by regulated agents at date 0 shi�s unregulated agents’ consumption up for any realization of the date
1 endowment, notably because it supports higher nontradable goods prices and thus uniformly relaxes
everyone’s date 1 borrowing constraint. Higher date 1 (tradable) consumption, and thus lower date 1
marginal utility, for a given level of �* 1, in turn induces unregulated agents to increase borrowing.
�e exact same logic applies to regulated agents’ response to unregulated agents’ borrowing.

While the substitutability emphasized in Proposition 1 is key to grasping our leakage phenomenon,
our ultimate interest lies in understanding how both sectors react to macroprudential policy. Our next
proposition describes how date 0 borrowing by the two sets of agents and date 1 borrowing capacity
respond to changes in the tax rate.

Proposition 2 (Positive e�ect of small tax). Starting from the unregulated equilibrium, imposing a
small tax leads to strictly less borrowing by regulated agents, strictly more borrowing by unregulated
agents, and to an unambiguously larger borrowing capacity at date 1.

�ite intuitively, Proposition 2 states that a tax on debt generates a decrease in regulated agents’
date 0 borrowing. More importantly, and consistent with Proposition 2, it also says that a larger tax
causes an increase in unregulated agents’ date 0 borrowing.

Figure 3 illustrates these results by representing the equilibrium response functions of the two
sets of agents in the „�’1� �* 1” space. �e solid line is the equilibrium response of unregulated agents,
while the other two lines are the equilibrium responses of regulated agents associated with a zero
tax (dash-do�ed line) and a positive tax (dashed line). �e intersection between the unregulated
agents’ equilibrium response and the regulated agents’ equilibrium response associated with a zero
tax coincides by de�nition with the unregulated equilibrium. A positive tax causes a shi� of the
regulated agents’ equilibrium response to the right: for a given �* 1 choice, regulated agents respond
to the tax by borrowing less (it makes borrowing more costly). But unregulated agents respond to
this lower borrowing by ’ agents by borrowing more themselves. �is extra borrowing by * agents
in turn induces ’ agents to borrow even less. And * agents again respond by borrowing even more.
�is “process” continues until equilibrium is reached at point „�g

’1� �
g
* 1”. �e equilibrium response of

unregulated agents can thus be thought of as the set of „�’1� �* 1” combinations that a government
could achieve by varying the tax g’ .

Finally, Proposition 2 indicates that the e�ect of a larger tax on the date 1 borrowing capacity is
positive. �is e�ect can be traced back to the net e�ect of an increase in regulated agents’ wealth on

6Note that this discussion focused on the e�ect of regulated agents’ borrowing on unregulated agents’ consumption.
But a similar logic applies for the e�ect of unregulated agents’ borrowing on regulated agents’ consumption.
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Figure 3: Equilibrium response functions of regulated and unregulated agents in equilibrium with
exogenous tax (0 � W � 1).

the date 1 price of nontradable goods:

3?#1
3�’1

=

‚
m?#1
m�’1

‚

‚
m?#1
m�* 1

�
m�* 1

m�’1|       {z       }
Leakage e�ect

� (21)

�at is, the direct e�ect of the tax on the date 1 price of nontradables via regulated agents’ borrowing
(�rst term in (21)) necessarily dominates its indirect e�ect via unregulated agents’ borrowing (second
term in (21)), resulting in a positive net e�ect. �is suggests that, at least locally, leakages may reduce
the e�ectiveness of macroprudential policy by making future borrowing capacity less responsive to a
tax on current borrowing, but are not powerful enough to overturn its e�ect.

2.5 Optimal macroprudential policy

�e preceding section characterized the private sector’s response to an exogenous tax. Building on
this positive analysis, we now take a normative perspective and endogenize the level of the tax as the
outcome of an optimal policy problem.

Before turning to a formal analysis of optimal policy, we �nd it useful to highlight the scope for
welfare improvements of macroprudential policy with the following preliminary result.

Proposition 3 (Welfare e�ect of small tax). If borrowing constraints bind with positive probability in
the unregulated equilibrium, a small positive tax is welfare improving for all agents.

�is result, based on a perturbation argument, indicates that in spite of leakages, it is always
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desirable for the planner to impose a small tax on regulated agents. According to Proposition 2,
such a tax leads to less borrowing by regulated agents, more borrowing by unregulated agents, and a
higher date 1 borrowing capacity. �e only �rst-order e�ect on welfare (for both agents) arises from
the relaxation of the borrowing constraint at date 1 in states of nature where this constraint binds
and is positive. All other e�ects are of second order. �is suggests that there exists potential welfare
gains from macroprudential policy despite leakages.

Figure 4: Contract curve and implementability constraint

Figure 4 plots the unregulated agents’ equilibrium response function q* „�’1” together with both
types of agents’ iso-utility curves passing through the unregulated equilibrium „�D41 � �

D4
1 ”. Proposition

3 implies that the segment of the unregulated agents’ equilibrium response function situated immedi-
ately to the right of the unregulated equilibrium necessarily lies in the lens formed by the two types
of agents’ iso-utility curves passing through the unregulated equilibrium.

Turning to optimal policy, we consider a planner maximizing a weighted sum of the agents’ utility
subject to the date 1 and date 2 objects being the outcomes of a continuation equilibrium, and subject
to the unregulated agents’ private optimality condition for borrowing (19). �e planner’s problem in
primal form is thus given by

max
�’1��* 1

WX

h
��* 1 ‚ VE0+* 1

�
~)1 „B”� �* 1� �’1

�i
‚ „1 � W”

h
��’1 ‚ VE0+’1

�
~)1 „B”� �* 1� �’1

�i
(22)

subject to

1 = E0

"
l

�)
* 1„~

)
1 „B”� �* 1� �’1”

#
�

where the functions +* 1 and +’1 are de�ned in (17) and X is a relative Pareto weight on unregulated
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agents. When X = 1, the planner’s objective becomes utilitarian, with the weight on agents’ welfare
being equal to their share in the population. When, in contrast, X � 1, the planner puts a relatively
larger weight on regulated agents.

Before formally characterizing the optimal policy, let us stress how the planner’s problem di�ers
from typical planning problems in environments with pecuniary externalities. As is standard, the
planner e�ectively controls �’1 by means of the tax on borrowing. However, here the choice of �* 1

is up to unregulated agents. As a result, the planner is constrained to choosing a pair „�’1� �* 1” from
within the equilibrium best response function of unregulated agents, as depicted by the solid line in
Figure 4.7 Absent this constraint, the solution to the planning problem would be the constrained-
e�cient allocation, depicted as the point „�241 � �241 ” in Figure 4.

�e planner’s optimal choice of �’1 is characterized by the following generalized Euler equation
(GEE):8

1 = E0
l

�)
’1
‚ V^~#E0

"�
‘’1 ‚

XW

1 � W ‘* 1

�
3?#1
3�’1

#
‚ WE0

2Õ
C=1

VC

" 
X
l

�)
*C

� l

�)
’C

! �
�#’C ��

#
*C

� 3?#1
3�’1

#
(23)

where ‘81 � l��)81 � l��)82 � 0 are the shadow costs associated with the credit constraints at date 1,
and 3?#1 �3�’1 is given by (21).

�is GEE equates the marginal costs from reducing borrowing and consumption today with the
marginal bene�ts of having lower debt tomorrow. It resembles the private Euler equation (7), but con-
tains additional terms re�ecting the planner’s internalization of pecuniary externalities and spillovers
to unregulated agents. �e le�-hand side is the same and corresponds to the marginal utility cost of
decreasing consumption by one unit. Given linear utility, this term is a constant equal to one. �e
�rst term on the right-hand side of (23) corresponds to the private marginal utility bene�t from bor-
rowing one less unit and raising consumption tomorrow, also present in (7). �e second term in (21)
constitutes the pecuniary externality: the planner internalizes that a lower level of debt leads to an
increase in the price of nontradable goods at date 1 and a relaxation of collateral constraints for both
regulated and unregulated agents at that date, where the bene�t of relaxing the collateral constraint
is an average of the Lagrange multipliers, weighted by the relevant Pareto weights.

�e key element in this GEE that di�ers from models with perfect �nancial regulation enforcement
is that it embeds the unregulated agents’ response to the borrowing choice of the planner for the
regulated agents, through the negative partial derivative m�* 1�m�’1 present in the price derivative
term 3?#1 �3�’1.9 �is leakage e�ect lowers the marginal value of saving on behalf of regulated agents
for the planner and therefore reduces the wedge between the planner’s and private agent’s perceived

7Naturally, the unregulated equilibrium belongs to the set of feasible „�’1� �* 1” pairs.
8We assume in what follows that the second-order conditions are satis�ed. We veri�ed numerically that this is the

case.
9Absent leakages, the expression would be the one in Bianchi (2011). Similar expressions arise in models with aggregate

demand externalities, in which savings a�ect the output gap.
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bene�t of having lower debt. �e �nal term of the GEE re�ects the planner’s marginal value of the
wealth redistribution induced by a higher price of nontradables.10

�e discrepancy between the planner’s GEE (23) and the regulated agent’s private Euler equation
for debt (7) calls for a Pigouvian tax on debt, as in the existing literature, with the tax given by

g’ =

VE0

h�
‘’1 ‚ XW

1�W ‘* 1

�
^~#

d?#1
d�’1

i
‚ WE0

˝2
C=1 V

C
h�
X l

�)
*C

� l

�)
’C

� �
�#
’C
��#

*C

� d?#C
d�’1

i
E0

h
l

�)
’1

i � (24)

�e optimal tax captures the uninternalized marginal costs of borrowing from the GEE (23). �e
expression suggests an ambiguous e�ect of leakages on the magnitude of the tax. Two key forces work
in opposite directions. First, the leakage term in (21) reduces the magnitude of the price derivative
term 3?#1 �3�’1 calling for a lower tax—a pure leakage e�ect. Second, leakages lead to higher average
shadow values of relaxing the collateral constraint, calling for a higher tax on the regulated sphere
and re�ecting an indirect squeezing e�ect. In other words, the macroprudential policy’s reduced ef-
fectiveness speaks in favor of a lower tax, while larger bene�ts from �nancial stabilization speak in
favor of a higher tax, resulting in an ambiguous total e�ect. Similarly, the relationship between the
size of the unregulated sector W and the optimal tax is a priori ambiguous. �rough numerical explo-
rations, we have found that the leakage e�ect appears to dominate, resulting in an optimal tax that is
decreasing in W .

Planner’s objective and Pareto improvements While Proposition 3 indicates that su�ciently
small (positive) taxes necessarily lead to Pareto improvements relative to the laissez-faire, it may be
that for some values of X (possibly including X = 1), the optimal intervention characterized by (23)-(24)
results in a welfare loss for a subset of agents. �e shape of indi�erence curves in Figure 4 suggests
that unregulated agents are always made be�er o� by an intervention, but that may not be the case
for regulated agents if the optimal tax exceeds a certain threshold (i.e., if the pair „�’1� �* 1” picked
by the planner is located to the right of the contract curve represented in bold). Se�ing X = 0 would
guarantee that both agents are made be�er o� by the intervention.11

2.6 Endogenous fraction of unregulated agents

So far, our analysis of macroprudential policy with leakages has taken the size of the unregulated
sector as exogenously given. In this section, we present a simple way to endogenize this variable
with a model of free entry into the unregulated sphere and show that the resulting framework can be

10A higher price of nontradables redistributes wealth from the net buyer of nontradables to the net sellers of nontrad-
ables.

11In the quantitative analysis of our in�nite horizon model in Section 3, all agents are made be�er o� by the intervention,
both in an unconditional sense and conditional on being in a Sudden Stop (see Figure 9), despite an assumed Pareto weight
of X = 1.
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used to map any W to a distribution of abilities to circumvent regulation without ge�ing caught in the
population.

We extend our baseline model by adding a regulation circumvention decision to the private agents’
date 0 problem. When avoiding regulation, agents run the risk of ge�ing caught with an idiosyncratic
probability i , which is randomly distributed over the population and realized before the decision to
circumvent is made. When caught, agents must pay a non-pecuniary penalty associated with a utility
cost of \ .

We assume that private agents and the planner move simultaneously. Based on the tax choice by
the government, agents choose whether they want to join the unregulated sector and a�empt to avoid
taxes, or remain in the regulated sector. Likewise, the government choose the optimal tax, taking as
given the decisions of agents to bypass regulation or not.

�e debt tax households anticipate is critical to their circumvention decision. Given a conjectured
tax g2

’
to be set by the government, an agent joins the unregulated sphere when

,*

�
g2’

�
� i8\ ¡,’ „g2’”

and remains in the regulated sphere otherwise.
�e equilibrium outcome is a �xed point. For a tax conjecture, households choose whether they

want to be unregulated. In turn, given the implied size of the unregulated sector, the government
chooses the tax on debt. Formally, an equilibrium of this extended model is a set circumvention,
savings and consumption decisions by private agents and a regulation decision by the planner such
that (1) given prices and the tax, agents’ decisions are optimal, (2) given the W implied by private
agents’ circumvention’s choices, the government chooses the tax optimally, and (3) all markets clear.

Since the debt tax is rebated lump-sum to regulated agents, the optimal consumption allocation
of a regulated agent is always available to an unregulated agents. It follows that,* „g2’” � ,’ „g2’”,
with ¡ when g2

’
< 0. �erefore, any value of W can be rationalized in the endogenous W model by a

distribution function for the probability of ge�ing caught featuring � „ī” = W for ī satisfying

,* „g’ „W”” � ī\ =,’ „g’ „W””�

where g’ „W” denotes the optimal tax in the exogenous W model, as characterized in (24).12

For instance, in the case of an exponential distribution for the probability of ge�ing caught � „i” =

12An interesting aspect that we leave for future research is the role of the timing of the regulation decision. In the case
of sequential decisions with the planner moving �rst, the planner would solve

max
�’1��* 1

�\
„ i� „g”

0
i3� ‚ X „1 � � „i� „g””

h
��* 1 ‚ VE0+* 1

�
~)1 „B”� �* 1� �’1

�i
‚ � „i� „g””

h
��’1 ‚ VE0+’1

�
~)1 „B”� �* 1� �’1

�i
�
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1 � 4�_i , the rate parameter required to rationalize a given value of W would be given by

_ = � \ ln„1 � W”
,* „g’ „W”” �,’ „g’ „W””

� 0�

�is mapping from W to _ is illustrated numerically in Figure 5, where it is apparent that a larger size
of the unregulated sphere can be supported by a smaller mean probability of ge�ing caught when
circumventing the regulation.13

Figure 5: Rate parameter _ of exponential distribution for idiosyncratic probability of ge�ing caught
� „i” = 1� 4�_i necessary to rationalize given level of W when share of unregulated agents is endoge-
nous.

2.7 Insights from three-period model

�is section presented a highly stylized model of imperfectly enforced macroprudential policy, where
the inherent motivation for a tax on borrowing derived from a pecuniary externality caused by �-
nancial constraints linked to a market price. �e key prediction of the model is that in response to a
tax on borrowing for the regulated sphere, borrowing by the unregulated sphere increases. �e main
normative insight is that this leakage phenomenon exerts two counteracting forces on the magnitude
of the optimal macroprudential tax on borrowing. On the one hand, a leakage e�ect makes the macro-
prudential tax on the regulated sphere less e�ective because the reduction in the regulated sphere’s
indebtedness is partially o�set by an increase in borrowing by the unregulated sphere. On the other
hand, the leakages make the macroprudential tax introduce a new distortion that takes the form of
an even more excessive indebtedness of the unregulated sphere. Correcting this distortion requires

where i� „g2
’
” is the threshold satisfying ,*

�
g2
’

�
� i� „g2

’
” = , ’ „g2

’
” and � denotes the cumulative density of i . �e

optimal tax when the government moves �rst would feature an extra term related to the sensitivity of the cumulative
density function � . �e economy with an exogenous W̄ would behave similarly to an economy with an endogenous W
featuring a steep density function at � = W̄ .

13�e mean probability of ge�ing caught implied by the exponential distribution is equal to 1�_.
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reducing the economy’s indebtedness further and therefore calls, paradoxically, for even tighter bor-
rowing restrictions on the regulated sphere, a squeezing e�ect.

3 �antitative Model

In this section, we embed the leakage phenomenon into a canonical quantitative model of �nancial
crisis. �e goal is to assess the extent to which leakages limit the ability of macroprudential regulation
to reduce the exposure to �nancial crisis and to study how leakages a�ect the optimal policy design.
From a theoretical perspective, an additional element emerges in the in�nite horizon model. Given
the forward-looking nature of the unregulated agents’ problem, these agents’ borrowing decision
depends not only on current regulation but also on their expectation of future regulation. As a result,
a new time inconsistency problem emerges that would not be present with perfect enforcement of
regulation.

3.1 Preferences and constraints in the in�nite horizon model

As in the three-period model, there are two types of agents with identical preferences and endow-
ments, who only di�er on whether they are subject to borrowing taxes. Preferences are given by

E0

1Õ
C=0

VCD „28C ”� (25)

where D „�” is a standard concave, twice continuously di�erentiable function that satis�es the Inada
condition. �e consumption basket 2 is an Armington-type CES aggregator with elasticity of substi-
tution 1�„[ ‚ 1” between tradable goods 2) and nontradable goods 2# , given by

2 =

h
l

�
2)

��[
‚ „1 � l”

�
2#

��[ i� 1
[

� [ ¡ �1� l 2 „0� 1”�

In each period C , agents receive endowments of tradable goods ~)C and nontradable goods ~#C and
choose a one-period non-state-contingent bond denominated in units of tradables. �e vector of
endowments y �

�
~) � ~#

�0 2 . � ’2
‚‚ follows a �rst-order Markov process. �e agents’ budget

constraints and credit constraints are given by

18C‚1
’„1 ‚ g8C ”

‚ 2)8C ‚ ?#C 2#8C = 18C ‚ ~)C ‚ ?#C ~#C ‚)8C (26)

and
18C‚1 � �^

�
?#C ~

#
C ‚ ~)C

�
� (27)

As in the three-period model, we assume that g*C = )*C = 0 for all C � 0. Given a tax policy
fg’C �)’C gC�0 and initial levels of debt 1* 0� 1’0, a competitive equilibrium is de�ned as a stochastic
sequence of prices f?#C gC�0 and households’ policies f2)8C � 2#8C � 18C‚1gC�0�82f* �’g such that (i) households
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maximize (25) subject to sequences of budget constraints (26) and credit constraints (27), (ii) the market
clears for nontradable goods (W2#

*C
‚ „1�W”2#

’C
= ~#C ), and (iii) the government budget constraint holds

)’ = �1’C
’

�
g

1‚g
�
.14 As discussed in Section 2.6, the value for W could be endogenized by assuming a

heterogenous costs of avoiding regulation.15

3.2 Optimal time-consistent regulated equilibrium

As in Section 2.5, we consider the problem of a planner choosing the tax policy that delivers the
highest welfare in the regulated equilibrium.

We assume that the planner makes decisions sequentially and without commitment, and we study
Markov-perfect equilibria. Focusing on a discretionary regime is useful for our purpose given our goal
of studying how leakages can undermine the e�ectiveness of regulation. We let - = f�* � �’� ~) � ~# g
denote the aggregate state vector of the economy, B’ „- ” denote the policy rule for regulated bond
holdings of future planners that the current planner takes as given, and

�
B* „- ”� C)’ „- ”� C

)
*
„- ”� C#

’
„- ”�

C#
*
„- ”�P# „- ”

	
denote the associated recursive functions returning unregulated agents’ bond hold-

ings, consumption allocations, and the price of nontradables under this policy rule.16

�e forward-looking nature of unregulated agents’ borrowing decisions introduces a time con-
sistency problem. To see why, consider the Euler equation of unregulated agents when it holds with
equality:

D)

�
2)* � 2

#
*

�
= V’ED)

�
C)* „-

0”� C#* „-
0”
�
� (28)

As was the case of constraint (19) in the three-period model, this constraint is a key implementability
constraint for the government in the in�nite horizon model. It captures the spillover e�ects from
the planner’s debt choice for ’ agents onto * agents’ debt choice. However, in the in�nite horizon
context where the planner regulates the economy in every period, this implementability constraint
depends on next period’s regulatory policy. For example, a policy that induces low consumption of*
agents tomorrow (through a low tax on ’ agents in C ‚1) will indirectly push down these agents’ con-
sumption today and moderate the overborrowing externality in the present. Moreover, if unregulated
agents expect loose regulation in the future, they have incentives to accumulate more precautionary
savings today and borrow less. Tomorrow, however, the planner acting without commitment will
not internalize the bene�ts of such a loose tax policy over previous periods. �e time-inconsistency
problem of macroprudential policy that we highlight is distinct from the one in Bianchi and Mendoza
(2018). In that paper, a time-inconsistency problem arises because of the presence of asset prices,
a forward-looking object, in collateral constraints. Here instead, it is due to imperfect regulation

14�e de�nition of equilibrium in recursive form is given in Appendix C.
15If the decision to bypass regulation is made once and for all at C = 0, it is straightforward to compute the cost that

would endogeneize the value of W .
16Notice that by a form of block recursivity, once the policy for regulated bond holdings is chosen, the rest of the

equilibrium objects can be obtained from the implementability constraints.
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enforcement.17

Following again the primal approach adopted in the three-period model context (see Section 2.5),
assuming a utilitarian objective, the optimal time-consistent (TC) planner’s problem can be described
by the following Bellman equation: say here we

do utilitar-
ian…
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A Markov equilibrium is de�ned by policy functions
�
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,

a value functionV„- ”, and a pricing function P# „- ” such that the value function and policy func-
tions solve (Optimal TC) given perceived policies

�
B8 „- ”� C)8 „- ”� C#8 „- ”

	
for 8 2 f* � ’g and P# „- ”.

3.3 Calibration

�e calibration follows Bianchi (2011). �e time period is one year. A �rst subset of parameters is
set independently using standard values from the literature: f = 2� A = 0�04� 1�„[ ‚ 1” = 0�83, and
the endowment process is estimated based on the HP-�ltered component of tradable and nontradable
GDP for Argentina. Assuming a �rst-order bivariate autoregressive process: ln y = d ln yC�1 ‚ YC ,
where YC =

�
Y)C � Y

)
C

�0 � # „0� �Y”, we obtain the estimates

d =

"
0�901 �0�453
0�495 0�225

#
ΣY =

"
0�00219 0�00162
0�00162 0�00167

#
�

�e second subset of parameters fV� l� ^g is set to match Argentina’s average net foreign asset posi-
tion, the share of nontradable output in Argentina, and the average frequency of �nancial crises for

17Other contributions studying optimal policy problems with Markov perfect equilibria include Klein, �adrini and
Rios-Rull (2005), Klein, Krusell and Rios-Rull (2008), and Debortoli, Nunes and Yared (2017).
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emerging markets.18 �is yields V = 0�91� l = 0�31� ^ = 0�32.
Finally, we solve our regulated equilibrium for di�erent values of W . For the most part, we focus

on values of W ranging from 0 to 0.5. A value of 0.5 entails a substantial amount of leakages by which
50% of the economy can evade regulation. Moreover, a value of W = 0�5 is the value at which the losses
from a dispersion in consumption across agents are given the highest weight by the planner.

Table 1: Calibration

Value Source/Target
Interest rate A = 0�04 Standard value
Risk aversion f = 2 Standard value
Elasticity of substitution 1�„1 ‚ [” = 0�83 Conservative value
Weight on tradables in CES l = 0�31 Share of tradable output=32%
Discount factor V = 0�91 Average NFA-GDP ratio = �29%
Credit coe�cient ^) = 0�32 Frequency of crises = 5�5%
Size of unregulated sector W = »0� 0�5… Baseline range

3.4 Numerical solution

�e computation of the optimal regulated equilibrium follows a nested �xed point algorithm, common
to those used in studies of Markov perfect equilibria (e.g. Bianchi and Mendoza, 2018). For a given
conjectured policy followed by governments in the future, we solve for the current optimal policy
using value function iteration. Using this solution, we update our conjectured policy. We iterate
until the optimal policy coincides with the conjectured policy to obtain a Markov-perfect equilibrium.
Details are provided in Appendix D.

3.5 Overborrowing and leakages

We start our quantitative analysis by looking at how the distribution of debt of regulated and un-
regulated agents di�ers across regimes. To show this, we conduct a 10,000-period simulation for the
unregulated equilibrium, the constrained-e�cient allocation and the regulated equilibrium forW = 0�5
and provide a sca�erplot of the bond positions.

Panels (a) and (b) of Figure 6 correspond to the sca�erplots of bond positions in the unregulated
equilibrium and constrained-e�cient allocation. Vertical and horizontal lines show sample averages.
Because there is no distinction between* and’ agents in these economies, all the points line up on the
45-degree line. One can see, as expected, that the unregulated equilibrium displays simulations with
higher levels of debt, which in turn are associated with a larger frequency and severity of �nancial
crises.

18In both the model and the data, �nancial crises are de�ned as episodes in which the current account increases by
more than one standard deviation.
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(a) Unregulated equilibrium (b) Constrained e•cient (c) Macropru w/leakages (W= 0”5)

Figure 6: Sca‹erplots of debt positions in unregulated equilibrium, constrained-e•cient allocation,
and macroprudential policy with leakages.

Panel (c) of Figure 6 displays the case of the regulated equilibrium forW = 0”5. In this case,

most pairs of bond positions are located below the 45-degree line, indicating higher levels of debt for

unregulated agents than for regulated agents. Interestingly, many simulation periods display levels

of debt for unregulated agents that are much higher than the maximum values of debt observed in

the unregulated equilibrium. ‘is is the leakage e‚ect at play: regulation worsens the overborrowing

problem for unregulated agents. Conversely, regulated agents' borrowing in the regulated equilibrium

with leakages is lower on average than in the constrained-e•cient equilibrium. ‘is suggests that the

planner (at least partially) compensates for the unregulated agents' extra borrowing by commanding

less borrowing for regulated agents.

3.6 Frequency and severity of crises

Next, we study the extent to which leakages undermine the e‚ectiveness of regulation at reducing the

vulnerability to €nancial crises. We de€ne €nancial crises as episodes in which the current account

increases by more than one standard deviation (or, equivalently, credit falls by more than one stan-

dard deviation). Based on this de€nition, we study how the probability of crises varies in regulated

equilibria associated with a range of values forW, and compare the severity of crises in a regulated

equilibrium whereW = 0”5 to the severity in the constrained-e•cient allocation and unregulated

equilibrium.

Figure 7 shows how the frequency of €nancial crises changes with the size of the unregulated

sphereW. In the absence of leakages (i.e., whenW= 0), the frequency of crises is about 0.5%, which is

about 1/10th of the frequency of crises in the unregulated equilibrium. As expected, the frequency of

crises increases withW. •ite strikingly, however, the increase is very modest even for values ofWas

large as 0”5. ‘is suggests that asWincreases, the planner adjusts its desired borrowing for regulated

agents to o‚set the e‚ect of leakages and achieve a given level of €nancial stability.

To study how leakages alter the government's ability to reduce the severity of €nancial crises using

macroprudential regulation, we construct a comparable event analysis following a procedure similar
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Figure 7: Long-run frequency of €nancial crises as a function ofW.

to Bianchi and Mendoza (2018). First, we simulate the decentralized equilibrium for a large number

of periods, identify all the €nancial crisis episodes, and construct 11-year window events centered

on the €nancial crisis episodes. Second, we take the average of key variables across the window

period for the decentralized equilibrium. ‘ird, we feed in the initial state and shock sequence that

characterizes all €nancial crises in the unregulated equilibrium to the policy functions of the regulated

equilibrium. We do this for two degrees of leakages:W= 0, which corresponds to the constrained-

e•cient allocation, andW= 0”5.19 Finally, we average the key variables across the window period

for the regulated equilibria. ‘is experiment allows us to do a counterfactual analysis that highlights

how leakages lead to di‚erent €nancial crises dynamics, controlling for the same sequence of shocks

and the same initial states.

Figure 8 shows the results of these simulations. In the top panels, we plot the income shocks, the

current account to GDP ratio, and the real exchange rate. In the bo‹om panels, we show the debt of

regulated agents, the debt of unregulated agents, and the optimal tax. All the plo‹ed paths correspond

to averages across all the simulation samples from the event analysis. ‘e unregulated equilibrium

(solid line) clearly displays a larger decline in credit and a larger current account reversal, as well

as a larger collapse in the real exchange rate (de€ned as the inverse of the price of the composite

good). ‘e crises are preceded by increases in the amount of credit and negative income shocks,

and are triggered on impact by income shocks that are about 1.5 standard deviations on average.

In contrast, the constrained-e•cient equilibrium (dashed line) displays a much smaller decline in

credit (1% percent versus 10% for the unregulated equilibrium) and a much smaller decline in the real

exchange rate. Note that these di‚erences in the event dynamics emerge despite the two economies

having the same initial conditions and being subject to the same shock sequence.

19In some sense, the economy with optimal macroprudential policy andW¡ 0 is still constrained-e•cient, but we
reserve this term for the economy without leakages.
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(a) Income (b) Current account to GDP (%) (c) Real exchange rate

(d) Debt of' agents (e) Debt of* agents (f) Optimal tax (%)

Figure 8: Event analysis.

In terms of aggregate variables, one can see that the regulated equilibrium forW= 0”5 (macropru-

dential policy with leakages, dash-do‹ed line) is much closer to the constrained-e•cient equilibrium

than to the unregulated equilibrium. ‘is is consistent with the message from Figure 7 that the fre-

quency of crises increases only modestly withW. ‘at is, overall, neither the frequency nor the severity

of €nancial crises increases substantially with leakages, even when as much as 50% of the economy

is le‰ unregulated. However, these aggregate results hide important disparities between the debt

dynamics of the regulated and unregulated spheres across the event window. Both debt positions

start at exactly the same level (by construction), but unregulated agents start accumulating debt very

rapidly (panel e), while regulated agents reduce their indebtedness at a signi€cantly faster pace than

in the constrained-e•cient equilibrium. Higher taxes than in the constrained-e•cient case (panel f),

together with stronger precautionary motives due to the spillback e‚ects from unregulated agents'

overborrowing, generates this sharp deleveraging by regulated agents in the run-up to the crisis event.

3.7 Welfare e‚ects

Finally, we study the welfare implications of macroprudential policy with leakages, focusing on two

key questions: By how much does average welfare fall because of the presence of leakages? How are

the welfare bene€ts of macroprudential policy distributed across regulated and unregulated agents?

Figure 9 displays measures of the welfare e‚ects of macroprudential policy. In the le‰ panel, we
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Unconditional welfare Welfare during Sudden Stops (W= 0”5)

Figure 9: Welfare gains from macroprudential policy in the presence of leakages.

Note: Welfare gains are computed in consumption equivalence terms and expressed in percentages.

report the unconditional welfare gains of moving from the unregulated equilibrium to the regulated

equilibrium for di‚erent degrees of leakages. We report welfare gains by agent type, as well as average

welfare gains.20 For comparison, we also show the welfare gains of moving from the unregulated

equilibrium to the constrained-e•cient allocation, which are of course the same for regulated and

unregulated agents. A €rst observation is that the average welfare gains of being in the regulated

equilibrium decrease with the size of the unregulated sector. ‘is €nding is natural, since with larger

W, the planner directly controls a smaller share of the economy and thus becomes less e‚ective at

correcting the overborrowing externality. However, it is also apparent that the decline in the average

welfare gains associated with leakages is modest. ‘is suggests that macroprudential policy remains

not only e‚ective but also desirable, even with signi€cant leakages.

‘is €gure also reveals interesting insights about the distribution of these welfare e‚ects across

the two spheres. First, welfare gains are higher for unregulated agents than for regulated agents. For

small values ofW, the welfare gains of macroprudential policy are about twice as large for unregu-

lated agents. ‘e intuition is straightforward: unregulated agents enjoy the same €nancial stability

bene€ts of macroprudential regulation as regulated agents, but unlike the la‹er, they do not bear the

costs that arise from lower consumption ahead of (potential) future crises. Second, welfare gains for

regulated agents fall sharply asWgets larger. Intuitively, larger leakages imply that more unregulated

agents overborrow and therefore impose a larger externality on regulated agents, who bear a more

concentrated cost regulation.

‘e right panel of Figure 9 complements this analysis by representing the welfare gains of macro-

20To compute unconditional gains, we €rst compute, for every possible state¹� * • � ' •~) •~# º, the proportional increase
in consumption across all possible future histories that would make households indi‚erent between remaining in the
unregulated equilibrium and switching to the regulated equilibrium with leakages. ‘en, we compute the mean of this
variable in the simulations.
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prudential policy with leakages (forW= 0”5), but through the event windows of Section 3.6 rather

than unconditionally. ‘e results are broadly consistent with the unconditional analysis, with unreg-

ulated agents capturing the lion's share of the gains. In addition, it is apparent that the increase in

the welfare gains of macroprudential policy in the run-up to a crisis event falls disproportionately on

unregulated agents. ‘is strengthens the conclusion that these agents become the main bene€ciaries

of macroprudential policy when leakages are large.

4 Conclusion

‘is paper conducted an investigation of macroprudential policies with limited regulation enforce-

ment. We characterize the optimal policy for di‚erent degrees of enforcement and examine the extent

to which leakages undermine the e‚ectiveness of capital ƒow management. Our results show that the

presence of leakages does not necessarily call for weaker intervention, as commonly argued in pol-

icy discussions. Instead, our framework suggests that a stronger intervention may well be needed.

•antitative results show that, thanks to a larger intervention, macroprudential policy remains highly

e‚ective at reducing the vulnerability to €nancial crises.

Even though we conduct our analysis in a small open economy model featuring excessive external

borrowing, we think that our insights regarding the two-way interaction between the regulated and

unregulated spheres of the economy and the trade-o‚s that emerge for optimal regulation are likely to

apply to a general class of models in which either €nancial or nominal frictions generate excessive risk

taking from a social point of view. Studying the interaction of these frictions and exploring alternative

policy responses is an interesting agenda for future research.
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A Formal characterization of continuation equilibria

Lemma 2. ForG 2 f22•D2•2D•DDg, aggregate date 1 consumption in regionG is given by� )
1 ¹Bº =

UG
~1~

)
1 ¹Bº ¸ UG

* � * 1 ¸ UG
' � ' 1 ¸ UG

~2~
)
2 .

Proof.See Appendix B.2. �

Lemma 2 says that, within each region, date 1 aggregate consumption is linear in each of the ag-

gregate state variables¹~)
1 ¹Bº• � * 1• � ' 1º. Date 2 aggregate consumption follows from the economy's

intertemporal resource constraint (15) and is therefore also linear in¹~)
1 ¹Bº• � * 1• � ' 1º. Finally, accord-

ing to (16), the equilibrium prices?#
1 ¹Bº and?#

2 ¹Bº are linear in� )
1 ¹Bº and� )

2 ¹Bº (respectively) and

therefore also linear in¹~)
1 ¹Bº• � * 1• � ' 1º. ‘e next lemma characterizes the aggregate consumption

solution in more detail.

Lemma 3. Œe coe•cients of the decision rule for� )
1 ¹Bº are such that:

1. UG
~1 ¡ 0 andUG

* • UG
' • UG

~2 � 0 with UG
* = 0 (resp.UG

' = 0) i‚ W= 0 (resp.W= 1), andUG
~2 = 0 i‚

G= 22.

2. if 0 � W� 0”5 (resp.0”5 � W� 1), thenUDD
~1 � U2D

~1 � UD2
~1 � U22

~1, (resp.UDD
~1 � UD2

~1 � U2D
~1 � U22

~1),
with strict inequalities if0 Ÿ WŸ 0”5 (resp.0”5 Ÿ WŸ 1).

3. UDD
* � U2D

* � U22
* andUDD

* � UD2
* � U22

* , with strict inequalities i‚W¡ 0.

4. UDD
' � U2D

' � U22
' andUDD

' � UD2
' � U22

' , with strict inequalities i‚WŸ 1.

Proof.See Appendix B.3. �

Part 1. of Lemma 3 establishes that aggregate consumption is increasing in each of the three

aggregate state variables¹~)
1 ¹Bº• � * 1• � ' 1º, always strictly for~)

1 ¹Bº, and strictly for� * 1 unlessW= 0

and for � ' 1 unlessW= 1. Part 2. of the lemma says that aggregate tradable consumption is more

sensitive to tradable income in the regions where the credit constraints are binding. Similarly, parts

3. and 4. establish that aggregate tradable consumption is more sensitive to the two sets of agents'

wealth positions in the regions where the credit constraints are binding.

We de€ne an individual's credit constraint set as the set of tradable endowment realizations such

that her credit constraint is binding:

Q¹181; � * 1• � ' 1• Gº �
n
~)

1 ¹Bº 2 R¸ j1D=2
82

�
181;~)

1 ¹Bº• � * 1• � ' 1• G
�

Ÿ 12>=
82

�
181;~)

1 ¹Bº• � * 1• � ' 1• G
�o

”

whereG 2 f22•D2•2D•DDg denotes the region in which the economy is and determines the mapping

between¹~)
1 ¹Bº• � * 1• � ' 1º and ¹?#

1 ¹Bº• ?#
2 ¹Bºº relevant to compute1D=2

82 and12>=
82 . ‘e four regions can
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hence be represented by the following sets:

X22¹� * 1• � ' 1º � Q¹ � * 1; � * 1• � ' 1•22º \ Q¹ � ' 1; � * 1• � ' 1•22º• (A.1)

XD2¹� * 1• � ' 1º � Q 2¹� * 1; � * 1• � ' 1•D2º \ Q¹ � ' 1; � * 1• � ' 1•D2º• (A.2)

X2D¹� * 1• � ' 1º � Q¹ � * 1; � * 1• � ' 1•2Dº \ Q 2¹� ' 1; � * 1• � ' 1•2Dº• (A.3)

XDD¹� * 1• � ' 1º � Q 2¹� * 1; � * 1• � ' 1•DDº \ Q 2¹� ' 1; � * 1• � ' 1•DDº” (A.4)

Further, we de€ne unions of some of these sets asX2¢ � X 22[X 2D, X¢2 � X 22[X D2, XD¢ � X DD[X D2

andX¢D � X DD[X 2D. ‘ese sets have some intuitive properties, summarized in the following lemmas.

Lemma 4. Œere are thresholds0G and1G satisfying0 � 0G � 1G (with 0G = 1G i‚ � * 1 = � ' 1) such that
~)

1 ¹Bº 2 X22 i‚ ~)
1 ¹Bº Ÿ 0G, ~)

1 ¹Bº 2 XDDi‚ ~)
1 ¹Bº � 1~, ~)

1 ¹Bº 2 X2D i‚ 0G � ~)
1 ¹Bº Ÿ 1G and� * 1 Ÿ � ' 1;

and~)
1 ¹Bº 2 XD2 i‚ 0G � ~)

1 ¹Bº Ÿ 1G and� * 1 ¡ � ' 1.

Proof.See Appendix B.4. �

Lemma 4 says that for a given pair¹� * 1• � ' 1º, the regions are ordered along the real line, that

the poorest type of agents is never unconstrained when the other type is constrained, and that when

both types of agents have the same wealth only the symmetric regions22andDDcan arise. It notably

implies thatX22, XD2, X2DandXDDare disjoint, and that their union isR¸ , meaning that for any triplet

¹~)
1 ¹Bº• � * 1• � ' 1º the economy is always in one and only one region. Finally, the next lemma o‚ers

comparative statics results.

Lemma 5. For a given� * 1 (resp.� ' 1) and any two� ' 1• ~� ' 1 (resp.� * 1• ~� * 1) such that� ' 1 Ÿ ~� ' (resp.
� * 1 Ÿ ~� * ):

1. for X =
�
X22•X2¢•X¢2

	
, if ~)

1 ¹Bº 2 X¹� * 1• ~� ' 1º (resp. ~)
1 ¹Bº 2 X¹ ~� * 1• � ' 1º), then~)

1 ¹Bº 2
X¹� * 1• � ' 1º.

2. for X =
�
XDD•XD¢•X¢D

	
, if ~)

1 ¹Bº 2 X¹� * 1• � ' 1º, then~)
1 ¹Bº 2 X¹� * 1• ~� ' 1º (resp. ~)

1 ¹Bº 2
X¹ ~� * 1• � ' 1º).

Proof.See Appendix B.5. �

Part 1. of Lemma 5 says that the regionX22where both types of agents are credit constrained, and

the regionsX2¢ andX¢2 where at least one type of agents is constrained are all shrinking in� ' 1 and

� * 1. Part 2. says that the regionXDDwhere both types of agents are unconstrained, and the regions

XD¢ andX¢D where at least one type of agents is unconstrained are all expanding in� ' 1 and� * 1.

A.1 Price and consumption functions

‘e price functions are related to the aggregate tradable consumption function, given in Lemma 2, by

?#
1 ¹~)

1 ¹Bº• � * 1• � ' 1º =
1 � l

l

� )
1 ¹~)

1 ¹Bº• � * 1• � ' 1º
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and

?#
2 ¹~)

1 ¹Bº• � * 1• � ' 1º =
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l

¹1 ¸ Aº»W�* 1 ¸ ¹ 1 � Wº� ' 1¼ ~̧)
1 ¹Bº ¸

~)
2

1̧ A � � )
1 ¹~)

1 ¹Bº• � * 1• � ' 1º

~# ”

‘e remaining consumption functions are related to these price functions but the relationships

depend on which agents are constrained and unconstrained.

When* agents are unconstrained (i.e., in regionsDDandD2), their consumption functions are

given by
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•

and
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for C= 1•2. In contrast, when these agents are constrained (i.e., in regions2Dand22), their consump-

tion functions are given by
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Similarly, when' agents are unconstrained (i.e., in regionsDDand2D), their consumption functions

are given by
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' 1¹~)

1 ¹Bº• � * 1• � ' 1º = � )
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1 ¹Bº• � * 1• � ' 1º =
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and
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for C= 1•2. In contrast, when these agents are constrained (i.e., in regionsD2and22), their consump-

tion functions are given by

� )
' 1¹~)

1 ¹Bº• � * 1• � ' 1º = l
�
¹1 ¸ Aº� ' 1 ¸ ¹ 1 ¸ ^º

�
~)

1 ¹Bº ¸ ?#
1 ¹~)

1 ¹Bº• � * 1• � ' 1º~# � 	
•

� )
' 2¹~)

1 ¹Bº• � * 1• � ' 1º = l
�
~)

2 ¸ ?#
2 ¹~)

1 ¹Bº• � * 1• � ' 1º~# � ^ ¹1 ¸ Aº
�
~)

1 ¹Bº ¸ ?#
1 ¹~)

1 ¹Bº• � * 1• � ' 1º~# � 	
•

� #
' 1¹~)

1 ¹Bº• � * 1• � ' 1º = ¹1 � l º
¹1 ¸ Aº� ' 1 ¸ ¹ 1 ¸ ^º

�
~)

1 ¹Bº ¸ ?#
1 ¹~)

1 ¹Bº• � * 1• � ' 1º~#
�

?#
1 ¹~)

1 ¹Bº• � * 1• � ' 1º
•

� #
' 2¹~)

1 ¹Bº• � * 1• � ' 1º = ¹1 � l º
~)

2 ¸ ?#
2 ¹~)

1 ¹Bº• � * 1• � ' 1º~# � ^ ¹1 ¸ Aº
�
~)

1 ¹Bº ¸ ?#
1 ¹~)

1 ¹Bº• � * 1• � ' 1º~#
�

?#
2 ¹~)

1 ¹Bº• � * 1• � ' 1º
”

B Proofs

B.1 Proof of Lemma 1

Note that the private Euler equation (18) is given by6¹1D4
1 º = 0, where

6¹1º � 1 �
¹ 0G

~

l

U22
~1~

)
1 ¹Bº ¸ ¹ U22

* ¸ U22
' º1

3� ¹~)
1 ¹Bºº �

¹ 1

0G

l

UDD
~1~)

1 ¹Bº ¸ ¹ UDD
* ¸ UDD

' º1 ¸ UDD
~2~)

2

3� ¹~)
1 ¹Bºº

= 1 �
¹ 0G

~

l
�
1 � ^ 1� l

l

�

¹1 ¸ ^º~)
1 ¹Bº ¸ ¹ 1 ¸ Aº1

3� ¹~)
1 ¹Bºº �

¹ 1

0G

l ¹1 ¸ Vº

~)
1 ¹Bº ¸ ¹ 1 ¸ Aº1 ¸ V~)2

3� ¹~)
1 ¹Bºº

6¹1º is continuous, satis€es6¹1º ! �1 for some €nite1, lim1!1 6¹1º = 1 ¡ 0, and60¹1º ¡ 0 for

the 1 range over which consumption is positive. It follows that there exists a single1D4
1 for which

6¹1D4
1 º = 0.

B.2 Proof of Lemma 2

We consider each region in turn.

22 In this case equilibrium is given by the system (12), (13), (14), (15) and (16). ‘is system is

block recursive in a linear system in� )
1 ¹Bº and ?#

1 ¹Bº. Solving this linear system yields the

following coe•cients for � )
1 ¹Bº: U22

~1 = ¹1 ¸ ^º•
�
1 � ^ 1� l

l

�
, U22

* = W¹1 ¸ Aº•
�
1 � ^ 1� l

l

�
, U22

' =

¹1 � Wº¹1 ¸ Aº•
�
1 � ^ 1� l

l

�
andU22

~2 = 0.
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2D In this case equilibrium is given by the system (12) and (13) for 8 = * , (10) and (11) for 8 = ’,
(14), (15) and (16). �is system is block recursive in a linear system in �)1 „B”, �)2 „B”, ?#1 „B” and

?#1 „B”. Solving this linear system yields the following coe�cients for�)1 „B”: U2D~1 =
W „1‚^”‚ 1�W

l
1

1‚V
1�W
l
‚W „1�^ 1�l

l ”
,

U2D
*

=
W „1‚A ” 1

1‚V

�
V‚ 1�W

l
‚W

�
1�W
l
‚W „1�^ 1�l

l ”
, U2D

’
=
„1�W” „1‚A ” 1

1‚V

�
1�W
l
‚W

�
1�W
l
‚W „1�^ 1�l

l ”
, U2D~2 =

1�W
l

V

1‚V
1�W
l
‚W „1�^ 1�l

l ”
.

D2 In this case ’ agents are constrained, and equilibrium is given by the system (12) and (13) for
8 = ’, (11) and (10) for 8 = * , (14), (15) and (16). �is system is block recursive in a linear system
in �)1 „B”, �)2 „B”, ?#1 „B” and ?#1 „B”. Solving this linear system yields the following coe�cients

for �)1 „B”: UD2~1 =
„1�W” „1‚^”‚W 1

l
1

1‚V
W

l
‚„1�W”„1�^ 1�l

l ”
, UD2

*
=

W „1‚A ” 1
1‚V „ Wl ‚1�W”

W

l
‚„1�W”„1�^ 1�l

l ”
, UD2

’
=
„1�W” „1‚A ” 1

1‚V „V‚ Wl ‚1�W”
W

l
‚„1�W”„1�^ 1�l

l ”
and UD2~2 =

W 1
l

V

1‚V
W

l
‚„1�W”„1�^ 1�l

l ”
.

DD In this case equilibrium is given by the system (10), (11), (14), (15) and (16). �is system is block
recursive in a linear system in �)1 „B” and �)2 „B”. Solving this linear system yields the following
coe�cients for �)1 „B”: UDD~1 = 1�„1 ‚ V”, UDD

*
= W „1 ‚ A ”�„1 ‚ V”, UDD

’
= „1 � W” „1 ‚ A ”�„1 ‚ V” and

UDD~2 = V�„1 ‚ V”.

B.3 Proof of Lemma 3

�e proof of part 1. simply follows from an inspection of the expressions for the coe�cients (see proof
of Lemma 2 above), noting that Assumption 2 implies 0 � 1 � ^ 1�l

l
� 1.

�e proof of part 2. follows directly from the observations that (1) UDD~1 � 1 � U22~1; (2) for W = 0,
U22~1 = UD2~1 and U2D~1 = UDD~1 ; (3) for W = 1, U22~1 = U2D~1 and UD2~1 = UDD~1 ; (4) mU2D~1�mW ¡ 0 and mUD2~1�mW � 0; and
(5) for W = 0�5, U2D~1 = UD2~1.

For part 3. we observe that if W = 0, then UDD
*

= U2D
*

= UD2
*

= U22
*

= 0, and that if W ¡ 0 assuming
that UDD

*
� U2D

*
, UDD

*
� UD2

*
, U2D

*
� U22

*
and UD2

*
� U22

*
individually lead to contradictions.

Similarly, for part 4. we observe that if W = 1, then UDD
’

= U2D
’

= UD2
’

= U22
’

= 0, and that if W � 1
assuming that UDD

’
� U2D

’
, UDD

’
� UD2

’
, U2D

’
� U22

’
and UD2

’
� U22

’
individually leads to contradictions.

B.4 Proof of Lemma 4

Let us de�ne the thresholds 0G � min„0� 0̃G ”,

0̃G � �l
1 � ^ 1�l

l

\
max „�’1� �* 1” � „1 � l” „1 ‚ A ” »W�* 1 ‚ „1 � W” �’1… ‚ V

1 � ^ 1�l
l

\
~̄) �

and

1G � �
1
\

min „�’1� �* 1” �
1�l
l
^ „1 ‚ A ”
\

»W�* 1 ‚ „1 � W” �’1… ‚
V

�
1 � 1�l

l
^
�

\
~̄) �

where
\ � „1 ‚ ^” V ‚ ^ 1

l
�
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It can be easily veri�ed that

1. 1D=282 „�81;~)1 „B”� �* 1� �’1� 22” � 12>=82 „�81;~)1 „B”� �* 1� �’1� 22” for 8 = * � ’ is equivalent to ~)1 „B” �

0G ,

2. 1D=282 „�81;~)1 „B”� �* 1� �’1� DD” � 12>=82 „�81;~)1 „B”� �* 1� �’1� DD” for 8 = * � ’ is equivalent to ~)1 „B” �
1G ,

3. 1D=2
* 2 „�* 1;~)1 „B”� �* 1� �’1� 2D” � 12>=

* 2 „�* 1;~)1 „B”� �* 1� �’1� 2D” and 1D=2
’2 „�’1;~)1 „B”� �* 1� �’1� 2D” �

12>=
’2 „�’1;~)1 „B”� �* 1� �’1� 2D” is equivalent to 0G � ~)1 „B” � 1G iif �* 1 � �’1, and

4. 1D=2
* 2 „�* 1;~)1 „B”� �* 1� �’1� D2” � 12>=* 2 „�* 1;~)1 „B”� �* 1� �’1� D2” and 1D=2

’2 „�’1;~)1 „B”� �* 1� �’1� D2” �

12>=
’2 „�’1;~)1 „B”� �* 1� �’1� D2” is equivalent to 0G � ~)1 „B” � 1G iif �* 1 ¡ �’1.

B.5 Proof of Lemma 5

�e proof simply follows from the fact that 0G and 1G are non-increasing in �* 1 and �’1 (see expres-
sions in proof of Lemma 4).

B.6 Proof of Proposition 1

We start by de�ning

�* „�* 1� �’1” � 1�E0

"
l

�)
* 1„~

)
1 „B”� �* 1� �’1”

#
� �’ „�* 1� �’1;g” � 1

1 ‚ g �E0

"
l

�)
’1„~

)
1 „B”� �* 1� �’1”

#
(B.1)

and note that the unregulated agents’ Euler equation (19) can be wri�en as �* „��* 1� �
�
’1” = 0, while

the regulated agents’ Euler equation (20) can be wri�en as �’ „��* 1� �
�
’1;g” = 0.

Let us consider the equilibrium response of* agents. We note that we can write �* as

�* „�* 1� �’1” = 1 �
„ 0G

~

l

�)
* 1
3� „~)1 „B”” �

„ 1G
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l

�)
* 1
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„ 1
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l

�)
* 1
3� „~)1 „B””

where the arguments of �)
* 1, 0G and 1G are omi�ed in the interest of space. According to the implicit

function theorem we have 3�* 1�3�’1 = � m�* �m�’1
m�* �m�* 1

, with
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* 1
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where we used the fact that terms containing derivatives of 0G and 1G drop out due to the continuity
of �)

* 1 across regions.21 �e derivatives in the various regions are given by

22 :
m�)

* 1
m�’1

=
l „1 ‚ A ” „1 ‚ ^” 1�l

l
„1 � W”

1 � ^ 1�l
l

;
m�)

* 1
m�* 1

= l „1 ‚ A ”
"
1 ‚
„1 ‚ ^” 1�l

l
W

1 � ^ 1�l
l

#
�

2D :
m�)

* 1
m�’1

=

l „1 ‚ A ” „1 ‚ ^” 1�l
l
„1 � W”

�
1�W
l
‚ W

�
„1 ‚ V”

h
1�W
l
‚ W

�
1 � ^ 1�l

l

� i ;

m�)
* 1

m�* 1
= l „1 ‚ A ”

26666641 ‚
„1 ‚ ^” 1�l

l
W

�
V ‚ 1�W

l
‚ W

�
„1 ‚ V”

h
1�W
l
‚ W

�
1 � ^ 1�l

l

� i 3777775
D2 :

m�)
* 1

m�’1
=
l „1 ‚ A ” 1�l

l
„1 � W”

1 ‚ V ;
m�)

* 1
m�* 1

=
l „1 ‚ A ”

�
1 ‚ 1�l

l
W
�

1 ‚ V

DD :
m�)

* 1
m�’1

=
l „1 ‚ A ” 1�l

l
„1 � W”

„1 ‚ V” ;
m�)

* 1
m�* 1

=
l „1 ‚ A ”

�
1 ‚ 1�l

l
W
�

„1 ‚ V”

�erefore, in every region the term m�)
* 1

m�’1
is non-negative (and strictly positive whenever W � 1) and

the term m�)
* 1

m�* 1
is strictly positive. It follows that for a given �’ , m�* �m�* 1 ¡ 0 in the range of �* for

which �)
* 1 is always positive. �e equilibrium response of * agents to �’ is therefore unique, and

can be wri�en as �* = q* „�’”. Further, in the range of �* and �’ for which �)
* 1 is always positive,

we have m�* �m�’1 � 0, with strict inequality whenever W � 1. It follows that q0
*
„�’” � 0, with strict

inequality whenever W � 1.
For the equilibrium response of ’ agents, the proof is analogous and involves the derivatives of

�)
’1 in the four regions. �e equilibrium response of ’ agents to �* is unique and decreasing, strictly

whenever W ¡ 0.

B.7 Proof of Proposition 2

�e proof relies on the relationship between the slopes q0
*

and »mq’�m�* …�1 at the unregulated equi-
librium debt choices, as well as on the sign of the partial derivative mq0

’
„�* � g’”�mg’ .

We have q0
*

= � m�* �m�’1
m�* �m�* 1

and mq’�m�* = � m�’�m�* 1
m�’�m�’1

. At the unregulated equilibrium we have
g’ = 0, ��

* 1 = ��
’1 = �D41 , and therefore 0G = 1G and �)

* 1 = �)
’1 = �)1 for any state at date 1. De�ning

[22 =
fl 0G

~

1
„�)1 ”2

3�
�
~)1 „B”

�
and [DD =

fl 1
0G

1
„�)1 ”2

3�
�
~)1 „B”

�
, we have

q0* „�D41 ” = �
[22 „1 � W”

„1‚^” 1�l
l

1�^ 1�l
l

‚ [DD „1 � W” 1
1‚V

1�l
l

[22

h
1 ‚ W „1‚^”

1�l
l

1�^ 1�l
l

i
‚ [DD 1

1‚V
�
1 ‚ W 1�l

l

� (B.2)

21Note that if �* 1 � �’1 the relevant intermediate region between 0G and 1G is G = 2D, while if �* 1 ¡ �’1 the relevant
region is G = D2 . If �* 1 = �’1 then 0G = 1G so this intermediate region drops out.

38



and

»mq’ „�D41 � 0”�m�* …�1 = �
[22

h
1 ‚ „1 � W” „1‚^”

1�l
l

1�^ 1�l
l

i
‚ [DD 1

1‚V
�
1 ‚ „1 � W” 1�l

l

�
[22W

„1‚^” 1�l
l

1�^ 1�l
l

‚ [DDW 1
1‚V

1�l
l

(B.3)

For any value of W , the numerator in (B.2) is smaller than the one in (B.3), and the denominator in
(B.2) is larger than the one in (B.3). It follows that jq0

*
„�D41 ” j � j »mq’ „�D41 � 0”�m�* …�1 j and therefore

q0
*
„�D41 ” ¡ »mq’ „�D41 � 0”�m�* …�1.
Furthermore, we have

mq0
’
„�* � g’”
mg’

= � m�’�mg’
m�’�m�’

= ��1�„1 ‚ g’”2
m�’�m�’

¡ 0

since m�’�m�’ ¡ 0.
In the „�* 1� �’1” space, the curve q’ „�* � g’” crosses the curve q* „�’” from above at „�* 1� �’1” =

„�D41 � �
D4
1 ”, and it shi�s to the right as g’ rises. Hence, in the neighborhood of „�D41 � �

D4
1 ”, a rise in g’

results in a downward movement of „��
* 1� �

�
’1” along the downward sloping q* „�’” curve. It follows

that for a small g’ , ��
* 1 is decreasing in g’ and ��

’1 is increasing in g’ .

�e result on debt capacity follows from the sign of the derivative 3?#1
3�’1
� m?#1

m�’1
‚ m?#1
m�* 1

m�* 1
m�’1

. Evaluated
at „�* 1� �’1” = „�D41 � �

D4
1 ”, this derivative is given by

3?#1
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=
1 � l
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"
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2666664
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h
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l

i
‚ [DD 1

1‚V
�
1 ‚ W 1�l

l

� 3777775 ¡ 0

in region 22 , and by

3?#1
3�’1

=
1 � l
l

�
„1 � W” „1 ‚ A ”

1 ‚ V ‚ W „1 ‚ A ”
1 ‚ V q0* „�D41 ”

�
=

1 � l
l

„1 � W” „1 ‚ A ”
1 ‚ V

2666664
[22 ‚ [DD 1

1‚V
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h
1 ‚ W „1‚^”

1�l
l

1�^ 1�l
l

i
‚ [DD 1

1‚V
�
1 ‚ W 1�l

l

� 3777775 ¡ 0

in region DD. Since 22 and DD are the only two relevant regions when debt choices are symmetric, it
follows that 3?#1

3�’1
¡ 0.

B.8 Proof of Proposition 3

�e proof relies on the result that starting from the unregulated equilibrium, a movement along the
best response of unregulated agents associated with a small tax g’ leads to welfare gains for agents of
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both types. To establish this result, we start by observing that
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�erefore, using the Envelope theorem, we have
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(B.4)

and
m+81

m� 91
= l
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for 9 < 8 .
Next, the date 0 welfare of an agent of type 8 associated with aggregate debt choices „�* 1� �’1”

can be wri�en as
,80„�* 1� �’1” = ��81 ‚ VE0+81„~)1 � �* 1� �’1”�

�us, the variation in welfare of an agent of type 8 caused by imposing a small tax on regulated agents
is proportional to

3,80

3�’1
=
m,80

m�’1
‚ m,80

m�* 1

m�* 1

m�’1
�

For unregulated agents, this variation is given by
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�
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�

Using (B.4) and (B.5) and evaluating the expression at the unregulated equilibrium, the variation re-
duces to

3,* 0

3�’1
= VE0

"
l
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� 1
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!
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#
�

Under the premise that borrowing constraints bind with positive probability in the unregulated equi-
librium, the term in round brackets is positive in some states of nature (and zero in the others). Fur-
thermore, Proposition 2 established that 3?#1

3�’1
¡ 0. It follows that 3,* 0

3�’1
¡ 0.
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For regulated agent, the welfare variation is given by

3,’0
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Using (B.4) and (B.5) and evaluating the expression at the unregulated equilibrium, the variation re-
duces to
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Again, under the premise that borrowing constraints bind with positive probability in the unregulated
equilibrium, the term in round brackets is positive in some states of nature (and zero in the others),
while Proposition 2 established that 3?#1

3�’1
¡ 0. It follows that 3,’0

3�’1
¡ 0.

C Recursive Competitive Equilibrium

We present the optimization problem of a representative agent in recursive form. �e aggregate
state vector of the economy is - = f�* � �’� ~) � ~# g. �e state variables for a type 8 agent’s problem
is the individual state 18 and the aggregate states - . Agents need to forecast the future price of
nontradables. To this end, they need to forecast future aggregate bond holdings. We denote by �8 „�”
the forecast of aggregate bond holdings for the set of type 8 agents for every current aggregate state
- , i.e., �08 = �8 „- ”. Combining �rst-order conditions equilibrium conditions 2) � 2# , budget constraints
and market clearing, the forecast price function for nontradables can be expressed as

?# „- ” =
1 � l
l

�
~#C ‚ »W�* ‚ „1 � W”�’… „1 ‚ A ” � »W�* „- ” ‚ „1 � W”�’ „- ”…

~#

�[‚1
� (B.6)

�e problem of a type 8 agent can then be wri�en as:

+ „18� - ” = max
1 0
8
�2)
8
�2#
8

D

�
2

�
2)8 � 2

#
8

��
‚ VE+ „108 � - 0” (B.7)

subject to
108 ‚ ?# „- ”2#8 ‚ 2)8 = 18 „1 ‚ A ” ‚ ?# „- ”~# ‚ ~)

108 � �^
�
?# „- ”~# ‚ ~)

�
�09 = �9 „- ” for 9 = f* � ’g

�e solution to this problem yields decision rules for individual bond holdings 1̂ „18� - ”, tradable goods
consumption 2̂) „18� - ” and nontradable goods consumption 2̂# „18� - ”. �e decision rule for bond
holdings induces actual laws of motion for aggregate bonds, given by 1̂ „�8� - ”.
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De�nition of unregulated Equilibrium. A recursive unregulated equilibrium is de�ned by a pric-
ing function ?# „- ”, perceived laws of motions �8 „- ” for 8 2 f* � ’g, and decision rules 1̂ „18� - ”,
2̂) „18� - ”, 2̂# „18� - ” with associated value function + „18� - ” such that:

1. Agents’ optimization:
n
1̂ „18� - ”� 2̂) „18� - ”� 2̂# „18� - ”

o
and + „18� - ” solve the agent’s 8 recursive

optimization problem for 8 2 f* � ’g, taking as given ?# „- ” and �8 „- ” for 8 = f* � ’g.

2. Consistency: the perceived laws of motion for aggregate bonds are consistent with the actual
laws of motion: �8 „- ” = 1̂ „�8� - ” for 8 = f* � ’g.

3. Market clearing:
W2̂# „�* � - ” ‚ „1 � W”2̂# „�’� - ” = ~#

and

W
�
�* „- ” ‚ 2̂) „�* � - ” � �* „1 ‚ A ”

�
‚ „1 � W”

�
�’ „- ” ‚ 2̂) „�’� - ” � �’ „1 ‚ A ”

�
= ~) �

D Numerical solution

To solve for the regulated equilibrium when W ¡ 0, we adopt a nested �xed point algorithm similar to
those used in studies of Markov perfect equilibria (e.g., Bianchi and Mendoza, 2018, Klein et al., 2005,
Klein et al., 2008). Given future policies, we solve for policy functions and value functions using value
function iteration in an inner loop. In the outer loop, we update future policies with the solution of
the Bellman equation from the inner loop. �e algorithm follows these steps:

1. Generate a discrete grid for the bond position of regulated agents �’ = f11� 12� � � � � 1" g, the
bond position of unregulated agents �* = f11� 12� � � � � 1" g and the shocks �. = fB1� B2� � � � � B# g
and choose an interpolation scheme for evaluating the functions outside the bond grids. We use
100 points for each bond grid and interpolate using piecewise linear approximation.

2. Guess policy functions U0
*

, P at step  81’ 2 �’ , 81* 2 �* and 8~ 2 �. . We use as initial
policies the policies of the unregulated equilibrium.

3. For givenU0
*
�P, solve for the value function and policy functions associated with the following

Bellman equation:

+ „- ” = max
f2)
8
�2#
8
�1 0
8
g82f* �’ g�‘�?#

WD „2)* � 2
#
* ” ‚ „1 � W”D „2

)
’ � 2

#
’ ” ‚ VE+ „- 0” (B.8)
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subject to

10’ = „1 ‚ A ”1’ ‚ ~) � 2)’ ‚ ?
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?# =
1 � l
l

 
W2)
*
‚ „1 � W”2)

’

~#

![‚1
(B.11)

2#’ =
2)
’

W2)
*
‚ „1 � W”2)

’

~# (B.12)
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~# (B.13)

10’ � �^ „P„- ”~# ‚ ~) ” (B.14)

10* � �^ „P„- ”~# ‚ ~) ” (B.15)

‘ = D) „2)* � 2
#
* ” � V „1 ‚ A ”EU

0
* „- 0” (B.16)

‘ � »10* ‚ ^ „P„- ”~# ‚ ~) ”… = 0 (B.17)

‘ � 0� (B.18)

�e Bellman equation is solved using value function iteration. In each state, the maximization is
performed using discrete search for 10

’
on the�’ grid. For a given 10

’
, the value of all remaining

variables (including 10
*

), and therefore of the objective, follow from (B.9)-(B.18).

4. Denote by fU and fP the policy functions that solve the recursive problem in step 3. Compute
the sup distance betweenU* and fU , as well as between P and fP . If the sup distance is higher
than 1.0e-5, updateU* and P and go back to step 2.
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